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Identification of Risk-Related Haplotypes with the Use of Multiple
SNPs from Nuclear Families

Min Shi, David M. Umbach, and Clarice R. Weinberg

Family-based association studies offer robustness to population stratification and can provide insight into maternally
mediated and parent-of-origin effects. Usually, such studies investigate multiple markers covering a gene or chromosomal
region of interest. We propose a simple and general method to test the association of a disease trait with multiple, possibly
linked SNP markers and, subsequently, to nominate a set of “risk-haplotype-tagging alleles.” Our test, the max_Z? test,
uses only the genotypes of affected individuals and their parents without requiring the user to either know or assign
haplotypes and their phases. It also accommodates sporadically missing SNP data. In the spirit of the pedigree disequi-
librium test, our procedure requires only a vector of differences with expected value 0 under the null hypothesis. To
enhance power against a range of alternatives when genotype data are complete, we also consider a method for combining
multiple tests; here, we combine max_Z* and Hotelling’s T?. To facilitate discovery of risk-related haplotypes, we develop
a simple procedure for nominating risk-haplotype-tagging alleles. Our procedures can also be used to study maternally
mediated genetic effects and to explore imprinting. We compare the statistical power of several competing testing
procedures through simulation studies of case-parents triads, whose diplotypes are simulated on the basis of draws from
the HapMap-based known haplotypes of four genes. In our simulations, the max_Z? test and the max_TDT (transmission/
disequilibrium test) proposed by Mclntyre et al. perform almost identically, but max_Z?, unlike max_TDT, extends directly
to the investigation of maternal effects. As an illustration, we reanalyze data from a previously reported orofacial cleft

study, to now investigate both fetal and maternal effects of the IRF6 gene.

The availability of detailed human haplotype data and
a growing list of SNPs, together with the declining costs
of genotyping, provide affordable and powerful tools for
identifying genes involved in susceptibility to complex
diseases. Improved statistical methods are needed to take
full advantage of ambitious projects like the Genetic As-
sociation Information Network (GAIN). Existing methods
for testing association between complex traits and a series
of possibly linked markers involve either sequential test-
ing of single markers or simultaneous testing of multiple
markers with or without phase information. Under dif-
ferent assumptions about linkage disequilibrium (LD) be-
tween the markers and disease-susceptibility alleles, re-
searchers have found haplotype-based"? or SNP-based® an-
alysis to be advantageous. Haplotype-based analyses are
potentially superior because they use information from
individual markers as well as the LD structure between the
markers. However, some haplotype-based methods require
estimation of haplotype phase, which becomes increas-
ingly difficult and susceptible to errors as the number of
markers increases. Moreover, studying many markers can
exacerbate problems from missing SNP data.

Whereas much work in this area has focused on case-
control association studies,* family-based studies present
different challenges but offer some substantial benefits.
Especially for complex conditions with onset early in life,

such as birth defects or pregnancy complications, geno-
typing affected individuals and their parents can be ex-
tremely useful for identifying genes with a causal role. An-
alytic methods for single SNPs—such as the transmission/
disequilibrium test (TDT),” likelihood-ratio tests based
on log-linear models,® and family-based association tests
(FBATs)’—all work by detecting apparent distortions in
transmission from parents to affected offspring. These
methods are statistically powerful and robust against bias
from genetic population structure.’” Case-parent triads
also can provide insight into maternally mediated effects®
and parent-of-origin effects,” mechanisms not readily
probed by case-control studies. Unfortunately, largely be-
cause of phase ambiguity, extensions of family-based
methods to handle haplotypes are not straightforward and
may rely on untestable assumptions.'®

Several methods that avoid the estimation of phase are
available for testing sets of SNPs with the use of case-
parents data. McIntyre et al."' proposed a max_TDT test,
in which one calculates the usual TDT statistic® for each
locus and takes the maximum as the test statistic. Statis-
tical significance is assessed via a permutation distribu-
tion obtained by repeatedly permuting the labels “trans-
mitted” and “not transmitted” for each affected offspring
and by computing max_TDT for each permutation. Since
max_TDT is calculated on the basis of the TDT at indi-
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vidual loci, missing individual SNP genotypes do not pose
a problem. Lee'? proposed the adaptive principal com-
ponent test (APRICOT), which exploits the correlation
structure produced by LD. The test is based on difference
vectors calculated by comparing the genotypes of affected
offspring with their corresponding “complements,” the
hypothetical siblings who carry the parental sequences of
DNA that were not transmitted to the affected offspring.
(Under the null hypothesis of no linkage with a disease
locus or no association, the difference vector has an ex-
pected value of 0.) Lee used an adaptive procedure to cal-
culate the test statistic on the basis of the largest few prin-
cipal components of the variance-covariance matrix of the
difference vectors.”” A third method, a paired Hotelling’s
T? test proposed by Fan et al.,*® is based on the same dif-
ference vector and also exploits the correlation structure.
Statistical significance can be assessed by relying on either
the asymptotic or the permutation distribution of the test
statistic. APRICOT and the paired Hotelling’s T test may
achieve increased power by accounting for the correlation
structure between the SNPs, but both procedures require
a complete difference vector in each family.

Our objective was to develop multimarker procedures
for testing association and for nominating a set of risk-
enhancing alleles with the use of possibly linked SNPs
from a case-parents design. We wanted a method with
certain desirable features; it should (1) use genotypes di-
rectly without requiring prespecification or estimation
of either haplotypes or phase, (2) assume only indepen-
dence across triads and Mendelian transmission, (3) ac-
commodate Hardy-Weinberg disequilibrium and popula-
tion structure, (4) use all potentially informative SNPs, (5)
tolerate nonnegligible recombination rates, and (6) be
readily generalizable to assessment of maternal genetic ef-
fects under the assumption of mating symmetry in the
population. The max_TDT satisfies all these criteria except
the last; APRICOT and Hotelling’s T evaluated by per-
mutations satisfy all criteria except the fourth. Our pro-
posed test, the max_Z? test, satisfies all these criteria. After
rejection of the null hypothesis—that the set of markers
is not associated with disease status within families—our
subsequent procedure nominates a set of “risk-haplotype-
tagging alleles” to aid discovery of a risk-related haplotype.
The risk-haplotype-tagging alleles represent a particular
subset of the studied alleles that are associated with in-
creased risk when they occur together. For convenience,
we refer to such a co-occurring set of alleles as a “haplo-
type,” recognizing that our usage is somewhat imprecise
and that the set of alleles nominated by our procedure
may not represent a single haplotype. In fact, the markers
that are selected for study might span more than one chro-
mosome, representing, for example, a set of genes in a
metabolic pathway.

We assessed the performance of the proposed tests
through simulations of studies of four genes from the
HapMap project. We compared our proposed tests with

several related procedures: the max_TDT procedure,'" the
paired Hotelling’s T> test,"* and the APRICOT test."?

Our methods for studying effects of genes carried by the
offspring lead naturally to an approach for studying ma-
ternally mediated genetic effects. The maternal genome
can be important for risk in the offspring, particularly for
conditions with onset early in life, such as birth defects,
osteosarcoma, or autism. Such a mechanism' would be
mediated through the maternal phenotype, as expressed
during gestation, and could exert both short- and long-
term influences on the child’s health. A maternal mech-
anism would not distort transmissions from parents to
affected offspring and would consequently not be detected
by methods such as the TDT or by comparisons of affected
individuals and their complements. Nevertheless, for a
single autosomal diallelic locus, one can detect maternal
genetic effects under an assumption of mating symme-
try—in effect, by using the father’s genotype as a matched
control for the mother’s.® One can apply our methods to
a difference vector between the mother and the father, to
test for maternally mediated genetic effects and to nom-
inate a maternal risk haplotype. We also propose a method
to assess possible imprinting effects, a phenomenon in
which a particular haplotype causes increased risk, but
preferentially through either the paternally or maternally
inherited copy.

Methods
Testing Effects of Offspring Genotype

The difference vector D.—The difference vector is the fundamen-
tal data structure that underlies our tests. Its construction is based
on triad families, which consist of an affected child and the two
parents. Through the difference vector, our method assesses trans-
mission distortion, reflecting the intuition that any set of alleles
jointly related to risk will have been transmitted to the affected
offspring more often than to the complement. Consider k diallelic
markers, and let M,, F,, and C, represent the number of copies of
a designated allele carried by the mother, father, and affected
offspring, respectively, at marker locus i (it does not matter which
allele is enumerated). Let M, F, and C denote the corresponding
k-component column vectors. One can construct genotypes of a
matching complementary sibling, the complement, who carries
all the alleles not transmitted to the affected child. The comple-
ment inherits M; + F, — C; (for i = 1...k). The paired differences
in genotypes between the affected offspring and the complement
produce a column vector of differences, D, having the ith com-
ponent equal to D, = 2C,— (M;+ F)(i = 1...k) and D, € {-2,
—1,0,1,2}. Under the null hypothesis that the set of markers is
not associated with disease status within families, the genotype
distribution of cases and their complements are the same, and,
consequently, D has expected value 0. When the recruitment of
triads is not feasible, such as when the disease has a late onset,
a difference vector can be constructed using other relatives (e.g.,
siblings, as we discuss below).

Max_Z? test.—We propose a max_Z* test employing D. At each
locus i, one computes a statistic Z;,, using only those families
informative at that locus—that is, families in which all three in-
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dividuals have that SNP genotype available and the difference D,
for that family is not 0. For each locus i, define

where D, ; is the average D, among informative families and SE,
is the corresponding SE for D, ; SE, ; is calculated as

\/ igl (Du,' _Du)z
nn;—1) ’

where D, ; is the difference at locus i for informative family j, and
n; ; is the number of informative families at locus i. Here, we use
the subscript I to indicate that the values are based on Informative
families. Our test statistic, max_ Z?, is the maximum of the Z?
across all k loci. We assessed statistical significance, using the
permutation distribution of max_Z* over random reassignments
of the labels “case” and “complement.” We generated the per-
mutation distribution under the null by multiplying D for each
family by either +1 or —1 with equal probability and recalculating
the statistic max_ Z*. The P value is then the proportion of per-
mutation-based test statistics that are larger than or equal to the
data-based test statistic. This permutation-based P value naturally
accounts for the statistical dependencies (LD structure) among
possibly linked SNPs. Since max_ Z? is calculated on the basis of
the Z7 at individual loci, this method handles missing individual
SNPs in a natural way.

Modified paired Hotelling’s T? test—To exploit the correlation
structure produced by LD, one can use a classic multivariate test.
One example is the paired Hotelling’s T? statistic proposed by
Fan et al.,"” which closely resembles the “multilocus TDT” test
proposed by Chapman et al.”® The test statistic is calculated as
T? = n D' £,' D, where n is the number of families, D is the
average of the difference vectors across all families, and ﬁ,, is the
sample variance-covariance matrix of the difference vectors. Sta-
tistical significance can be assessed using either the permutation
distribution of T? or the asymptotic x* distribution of T?. Unlike
the max_ Z* test, the Hotelling’s T? test requires complete ge-
notype data for all markers. To facilitate simulations, our version
of Hotelling’s T* used a modified estimator of the variance-co-
variance matrix (appendix A).

Combined test—We expect max_Z* to perform well when one
has genotyped a causative SNP. By contrast, we expect Hotelling’s
T? test, being fully multivariate, to do relatively well when one
has not genotyped any causative SNP or, alternatively, the in-
creased disease susceptibility is due to a particular risk haplo-
type. In the latter two cases, the detection of association relies
on LD within the chromosomal region. We accordingly devised
a method to combine these tests to take advantage of their com-
plementary strengths and to improve performance under a broad
range of possibilities (details in appendix B).

Nominating Risk-Haplotype-Tagging Alleles

Unless a causative SNP is among the typed markers, one must
rely on the LD between the typed markers and a causative genetic
variant to identify disease association. Marker SNPs carry different
amounts of information about the disease-related variant or hap-
lotype. We would like a method whereby the data nominates

alleles at a subset of marker SNPs, alleles that together are highly
predictive of disease susceptibility. Such SNPs will be referred to
as “risk-haplotype-tagging SNPs” and their corresponding alleles
as “risk-haplotype-tagging alleles.”

The sign of each Z; points to the overtransmitted allele at locus
i on the risk haplotype: a positive Z; based on D = 2C - M — F
indicates that the designated or “counted” allele at locus i is re-
lated to risk, whereas a negative Z; indicates the opposite or “un-
counted” allele. The magnitude of Z—or, rather, its P value—
assesses the locus-specific strength of evidence. When the P value
for an individual locus is smaller than a preset threshold, we
consider the locus to be related to risk and designate the over-
transmitted allele as a risk-haplotype-tagging allele. In choosing
a threshold, researchers need to balance the loss of informative
SNPs if the threshold is too stringent against the dilution of the
real signal with noise if the threshold is too liberal.

Maternal Effects

The max_Z* and Hotelling’s 7> methods can be adapted to testing
for maternally mediated genetic effects, by use of paired mother-
father comparisons, under an assumption of mating symmetry
in the population, as defined by Schaid.'® To test for maternal
effects, one uses the same procedures but with a redefined dif-
ference vector—namely, the SNP-count differences between the
mother and the father, D = M — F. Similarly, one can use Z;based
on M — F to nominate risk-haplotype-tagging alleles for effects
mediated through the mother.

Under an extended symmetry assumption, the power for de-
tecting maternal genetic effects by use of D = M — F under a
given risk scenario is the same as that for testing offspring genetic
effects by use of D = 2C — M — F under the corresponding off-
spring risk scenario. The extended symmetry assumption needed
is that of parental haplotype exchangeability (PHE)—that all pos-
sible assignments to the two parents of the four haplotypes they
carry occur with equal likelihood in the population at large. Un-
der this assumption, the power for detecting maternally mediated
effects is the same as that for detecting offspring-mediated effects
(appendix C). Consequently, our simulations apply equally well
to maternal effects.

The assumption of PHE obviates additional simulations for tests
of maternal effects, but it is not required for the validity of any
of the tests. For maternal-effects testing based on M — F to be
valid, one need only assume mating symmetry at the gene under
study, which ensures that, under a null hypothesis of no maternal
effects, the expected difference vector will be 0. For offspring-
effects testing based on 2C — M — F to be valid, one need only
assume that Mendelian proportions hold for offspring at the ages
under study in the source population, which ensures that, under
the null corresponding to offspring effects, the expected differ-
ence vector will be 0.

This assumption plausibly holds even in admixed populations.
For example, if a population consists of multiple subpopulations
and mating is random within each, then PHE holds within each
and, hence (following simple algebra), holds overall, even if hap-
lotype prevalences vary across subpopulations.

Imprinting
Suppose that an analysis based on M — F detected asymmetry,

supporting a possible maternal genetic effect. When an offspring
effect is present, however, this finding is also consistent with a
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different interpretation. The effect of a variant haplotype on risk
may depend on the parent of origin for that haplotype, through
an epigenetic mechanism like imprinting. For example, suppose
a particular haplotype causes increased risk only through the pa-
ternal copy (the maternal copy having been epigenetically si-
lenced). That mechanism could also produce a nonzero mean for
M — F. Thus, the interpretation of a finding of parental asym-
metry can be challenging, in that maternal effects can be hard
to distinguish from parent-of-origin effects. This difficulty is ac-
centuated if the haplotype identified through M — F resembles
the one identified through 2C — M — F. Such a finding could
mean either that a single haplotype contributes both offspring
and maternal effects or that the maternally derived copy in the
offspring is the copy that matters most for risk. On the other
hand, if the haplotype identified through M — F carries the op-
posite allele at nearly every risk-haplotype-tagging SNP from the
one identified through 2C — M — F, then the paternally derived
copy is implicated as the one that matters for risk.

To investigate possible parent-of-origin effects, we recommend
the following strategy. First, restrict attention to risk-haplotype-
tagging SNPs nominated by the offspring analysis and adjust the
coding so that the risk-haplotype-tagging alleles are the ones enu-
merated. The idea is to stratify the triads according to whether
the offspring might carry or definitely does not carry a copy of
this “tagged” haplotype and to see whether the parental asym-
metry appears regardless of whether the offspring inherited a
copy. Consider the subset of triads where the child’s genotype is
compatible with carrying a copy of the identified risk haplotype
(i.e., where C,; > O for every risk-haplotype-tagging SNP). Among
these possible-carrier triads, compute the mean of M, — F; at each
risk-haplotype-tagging SNP among informative families (nonzero
difference). Divide these mean differences by their corresponding
SEs on the basis of informative families to create a vector Z. Let
H,, (where m indicates that the copy “may be” present in off-
spring) be the sum of the signed elements of Z and compare H,,
to the permutation distribution based on repeated randomiza-
tions of the sign of each family’s M — F and recomputations of
Z. Then, perform the same procedure to compute a separate sta-
tistic H, (where n indicates that the copy is “not” present in
offspring) based on the noncarrier triads initially left aside, those
in which the offspring does not carry the risk haplotype (C; =
0 for at least one risk-haplotype-tagging SNP). If H,, is significant
whereas H, is not, then the data support a parent-of-origin in-
terpretation. If, instead, both are significant, then the data sup-
port a maternal-effects interpretation.

Simulations

We obtained haplotypes and their frequencies for the 100-kb or
200-kb genomic regions around four genes—N-acetyl transferase
2 (NAT2 [MIM 243400]); replication factor C, 140-KD subunit
(RFC1 [MIM 102579]); DNA polymerase iota (POLI [MIM
605252]); and caspase 9 (CASP9 [MIM 602234])—on the basis of
HapMap phased genotype data from a sample with European
ancestry (tables 1 and 2). We selected these four genes to represent
genomic regions with a range of LD block structures and nu-
merous haplotypes, some of which are rare. Consequently, we
believe that they pose a sufficient challenge to any method for
analysis of association. We used only haplotypes with an esti-
mated frequency >2%. The presence of redundant SNPs (as occurs
with all four genes) will not affect the behavior of any of the
compared tests, but redundancies do increase the computing
burden. Therefore, we removed the pairwise redundant SNPs.

Table 1. Characteristics of the Genes Used in the

Simulations
No. of
Total Nonredundant

Gene  Chromosome SNPs® SNPs® Haplotypes
NAT2 8p23.1-21.3 32 22 21
RFC1 4p14-p13 44 12 17
POLI 18q21.1 83 13 12
CASP9  1p36.3-36.1 29 8 10

* The SNPs are located in a 200-kb region around RFCI and in a 100-
kb region around the other genes.
° For sets of SNPs with pairwise ' = 1, only one SNP is retained.

The haplotypes with their frequencies formed a convenient
and realistic population from which we sampled to perform
simulations.

We generated simulated triad diplotypes, using the following
method. (1) Designate a particular haplotype as the bearer of a
disease mutation and create a disease-susceptibility haplotype by
inserting a specific SNP mutation at one additional locus of that
designated haplotype. (The remaining haplotypes each get the
wild-type allele at that locus.) (2) Modify the haplotype frequen-
cies so that those of the new haplotype and those of the desig-
nated haplotype are each half of the latter’s original frequency
(i.e., half the copies of the designated haplotype now bear a dis-
ease-related mutation). (3) Randomly assign to each parent two
haplotypes by sampling with replacement from a multinomial
with the specified haplotype frequencies. (4) Create a random
child from the parents on the basis of Mendel’s law, assuming
no recombination within the gene. (We impose Hardy-Weinberg
equilibrium [HWE] and no recombination purely for conven-
ience; no methods that we studied require those assumptions.)
(5) Assign a relative risk of disease to the child on the basis of
the number of inherited copies of the disease mutation allele and
the assumed relative penetrances. (6) Assuming a baseline rate of
disease in those with no copies of the allele, calculate risk of
disease by multiplying the assumed baseline rate by the assigned
relative risk from step 4. One can use any baseline rate, as long
as the maximum risk of disease among the three genotype groups
does not exceed 1. We used the inverse of the larger relative risk
for simulation efficiency (without loss of generality). (7) With
probability equal to the assigned risk from step 5, assign case
status, discarding a family if the offspring is assigned to be un-
affected. (8) Repeat steps 3-7 until the required number of case-
parents triads is achieved. We performed this procedure repeat-
edly, using each of the known haplotypes in turn as the desig-
nated haplotype on which the disease mutation occurred. Thus,
we were able to observe the behavior of the testing procedures
across a set of scenarios that captured a range of mutation SNP
frequencies and LD strengths between the disease mutation and
its neighboring SNPs. We also simulated scenarios in which the
increased disease susceptibility arose from a risk haplotype in-
stead of a single causative SNP. To simulate these scenarios, we
did not introduce a mutation SNP in step 1 but instead designated
one haplotype as the risk haplotype and followed steps 3-8 as
described above.

Let R,, R, represent the relative risks for disease in individuals
carrying 1 and 2 copies, respectively, of the disease allele com-
pared with O copies. We performed simulations under an unre-
stricted (R, = 2, R, = 3) model and under a dominant (R, = 2,
R, = 2) model, with 400 or 1,000 triads in each simulation and
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no missing data. We generated 5,000 simulated studies under
each scenario and used 1,000 permutations (switching the labels
for case vs. complement) for each simulated data set to estimate
the P value.

We also used simulations to evaluate our process for nominat-
ing risk-haplotype-tagging alleles, assuming that allele nomina-
tion would be undertaken only if the overall test first rejected
the null hypothesis at .05. We examined several nomination
thresholds (from .05 to .3) for use in identifying risk-tagging SNPs
and present results obtained with a threshold of .1.

We used the following strategy to evaluate our risk haplotype
nomination scheme. Since our simulations used a set of known
haplotypes, we were able to record how well we did. For each
simulation, we classified the risk-haplotype-tagging alleles into
one of four groups, ordered from best to worst: (1) those that
uniquely identified the correct risk haplotype; (2) those that were
consistent with a set of haplotypes that included the correct hap-
lotype—that is, a set of haplotypes that included the correct one
and had the same alleles as the identified risk-haplotype-tagging
alleles at the corresponding loci; (3) those that did not agree with
any existing haplotype; and (4) those that were consistent with
a set of haplotypes that included only nonrisk haplotypes. We
calculated the proportion of simulations with global statistical
significance (P <.05) that yielded results in each of these four
categories.

Results
Simulated Genes

The phased genotype data obtained from the HapMap pro-
ject include 29-83 SNPs for the four genes, accounting for
10-21 haplotypes. By removing redundant SNPs, we re-
duced the number of SNPs by at least 30%, leaving 8-22
SNPs in our simulation (table 1). All these genes had one
or two haplotypes with frequencies >10%, followed by a
few haplotypes with intermediate frequencies, but the ma-
jority of the haplotypes had very low frequencies (table
2). Under the scenario that the increased disease suscep-
tibility is due to a causative SNP, we created a susceptibility
haplotype for each original haplotype in turn, by intro-
ducing the mutation site to only half of the copies of the
original haplotype; therefore, the frequency for each such
susceptibility haplotype is half that listed in table 2.

Power Comparison

We compared the five methods mentioned above (max_Z?,
max_TDT, Hotelling’s 7%, APRICOT, and our combined
test), using simulations under three scenarios: a causative
SNP is among the genotyped markers (SNP_typed) or is
not (SNP_not_typed), or the increased disease suscepti-
bility is due to a risk haplotype (Hap). All methods showed

Table 2.
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Figure 1. Power curves for NATZ2 in the SNP_typed,

SNP_not_typed, and Hap scenarios with R, = 2, R, = 3 with the
use of each successive background haplotype as the mutation-
bearing or risk haplotype. The eight most frequent risk haplotypes
are given in descending order of frequency, with the X-axis scale
of log,,[1/frequency] labeled as “1/Frequency.” These frequencies
are for the mutation-bearing haplotype or risk haplotype. Hap-
lotypes with identical frequencies were shifted slightly for better
visualization, as indicated by the arrows. Left column, 400 triads.
Right column, 1,000 triads. Top row, SNP_typed. Middle row,
SNP_not_typed. Bottom row, Hap. Lines with unblackened triangles
indicate max_Z?; lines with unblackened diamonds indicate
sum_Llog(P); lines with “T” indicate max_TDT; lines with blackened
squares indicate Hotelling’s T lines with blackened triangles in-
dicate APRICOT.

Haplotype Frequencies of the Genes Used for Simulations

Haplotype

Gene 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 21

NAT2 .23 .10 .09 .07 .05 .04 .04 .03 .03 .03
RFC1 .28 .11 .09 .07 .05 .05 .04 .04 .04 .03
POLI .28 .24 .10 .07 .06 .05 .05 .04 .04 .04
CASP9 30 .15 .10 .10 .09 .08 .06 .05 .04 .04

.03 .03 .03 .02 .02 .02 .02 .02 .02 .02 .02
.03 .03 .03 .03 .03 .03 .03
.02 .02
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The figure is available in its entirety in the online
edition of The American Journal of Human Genetics.

Figure 2. Power curves for RFC1, POLI, and CASP9. This legend
appears in its entirety in the online edition of The American Journal
of Human Genetics.

type I error rates consistent with the nominal 0.05 level
(results not shown). Here we present results under risk
scenario R, = 2, R, = 3 (results for R, = 2, R, = 2 were
qualitatively similar and are not shown). Figure 1 shows
the powers of the tests as each of the eight most frequent
haplotypes for NAT2 was successively simulated as the one
enhancing risk (corresponding results for RFC1, POLI, and
CASP9 are shown in fig. 2). For all the methods examined,
the power generally declined with decreasing haplotype
frequency. The decline was not monotone, however, since
the particular risk haplotype structure—the set of SNPs
carried on the haplotype—also influenced the power.
Power dropped <10% when the risk haplotype was rare
(<1%) and the mutation SNP was not typed (results not
shown). Increasing the number of triads from 400 to 1,000
boosted the power, most markedly when the power for
the 400-triad simulations was reasonably good. Neverthe-
less, as expected, this increase in sample size improved the
power only slightly under a recessive model when the risk
haplotype was rare (results not shown). Power curves gen-
erated under scenario Hap, in which the increased risk
was due to a risk haplotype rather than to a causative SNP,
resembled those under SNP_not_typed but with increased
power. We also simulated scenarios similar to SNP_typed
and SNP_not_typed but with the disease mutation occur-
ring on only 15% of copies of the background haplotype.
As expected, power was reduced in these scenarios; oth-
erwise, patterns were similar to those seen when the risk
haplotype was more frequent (data not shown).

Overall, max_Z* and max_TDT exhibited very similar
power. Both were typically more powerful than Hotelling’s
T? when a causative SNP was measured; the pattern re-
versed when the causative SNP was not typed or when
risk was associated with a haplotype rather than a single
SNP. This finding was expected because, being fully mul-
tivariate, Hotelling’s T* makes better use of LD. APRICOT
did not perform well under many simulation conditions.
This finding is not surprising, given that APRICOT is based
on the first few principal components, whereas the disease
might instead be related to only the last PC."” Our com-
bined statistic, sum_log(P), had power that tended to track
the better of max_Z? and Hotelling’s 77 tests.

Haplotype Determination

When a simulation achieved global significance (P <.05),
we used the data to nominate a set of risk-haplotype-tag-
ging alleles based on Z statistics from individual SNPs, as
described above. We present here results with a criterion

SNP_typed
Proportion

yped

Propor;ion

SNP_not_t

0.8 1.0
1

Hap
Proportion
0.6

0.4

0.2

0.0

0.12 0.01
- r 1
023 0.02

Frequency

Frequency

Figure 3. Risk haplotype nomination for NATZ in the SNP_typed,
SNP_not_typed, and Hap scenarios with R, = 2, R, = 3. Results
are based on simulations with global significance at P < .05 and
cutoff criterion P<.1. Left panel, 400 triads. Right panel, 1,000
triads. Top row, SNP_typed. Middle row, SNP_not_typed. Bottom
row, Hap. Each column represents a successive haplotype as the
mutation-bearing or risk haplotype, sorted by descending order of
frequency along the X-axis. The white line represents the power
curve for sum_log(P) and indicates the fraction of 5,000 simulated
studies reaching global significance. From bottom to top, the dif-
ferent shades represent the proportion of simulations where the
correct haplotype was uniquely identified (dark gray), the risk-
haplotype-tagging alleles were consistent with a set of haplotypes
that included the correct one (medium gray), the risk-haplotype-
tagging alleles did not agree with any existing haplotype (light
gray), or the risk-haplotype-tagging alleles agreed with only the
nonrisk haplotypes (white).

of P<.1—that is, if the P value from the Z, for an indi-
vidual SNP is <.1, that SNP is nominated as a risk-hap-
lotype-tagging SNP. Using the predicted risk-haplotype-
tagging alleles, we grouped the simulation data sets that
achieved global significance into the four categories de-
scribed above. Figure 3 shows the results for NAT2, under
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risk scenario R, = 2, R, = 3 and under three simulation
scenarios with 400 or 1,000 triads in each simulated data
set (corresponding results for RFC1, POLI, and CASP9 are
shown in fig. 4). With 1,000 triads, >60% of the statisti-
cally significant simulated studies uniquely identified the
correct haplotype when the mutation SNP was typed.
When the mutation SNP was not typed or when the in-
creased disease susceptibility was associated with a hap-
lotype rather than a mutation SNP, unique identification
of the correct haplotype declined. The probability of
uniquely identifying the correct haplotype depended on
the strength of LD between the selected loci and the caus-
ative allele or risk haplotype. Nonetheless, even when the
causative SNP was not typed or risk was associated with
a haplotype, the probability of including the correct risk
haplotype among all the haplotypes identified was rea-
sonably high. In scenarios in which the disease mutation
appeared on only 15% of the background haplotype, the
probability of including the correct risk haplotype among
those identified suffered (data not shown).

An Example: Orofacial Clefts

We applied these methods to data from an orofacial cleft
study.'® The data, from 296 Filipino case-parents triads,
include genotypes of 36 SNPs in a 300-kb region around
the candidate gene, interferon regulatory factor 6 (IRF6
[MIM 607199]). We assessed statistical significance on the
basis of 10,000 permutations. With use of D = 2C - M —
F, max_Z?, max_TDT, sum_log(P), and Hotelling’s 77 all
indicated a statistically significant association with off-
spring genotype (P = .0034, .0036, .0039, and .028, re-
spectively), supporting the earlier report.'®* APRICOT
(P = .53) failed to detect an association. (We substituted
zeros for missing SNPs in the difference vector when cal-
culating sum_log(P), Hotelling’s 7%, and APRICOT.) Using
a threshold of .1, we identified 18 risk-haplotype-tagging
alleles. These 18 include all 9 alleles given in the original
article by Zucchero et al.'® (fig. 5A). An estimated fre-
quency of 0.46 was reported for the nine-SNP risk hap-
lotype." Our expanded set of risk-haplotype-tagging al-
leles may facilitate research to better define an important
risk haplotype for clefting.

With use of D = M — F, max_Z* and sum_log(P) sug-
gested a possible maternal effect (P = .071 and .073, re-
spectively), Hotelling’s T? provided less evidence (P =
.12), and APRICOT showed no association (P = .64). The
maternal risk haplotype nominated after this test included
14 SNPs, 13 of which were also nominated by D =
2C — M — F. Moreover, at each of the 13 SNPs identified
in common, the maternal risk-tagging allele was opposite
the one nominated by the offspring analysis (fig. 5B). One
plausible explanation for such a reversal is imprinting. If
the paternally inherited copy alone conferred risk, then
the father of an affected child would be more likely than
the mother to carry a copy of the haplotype, producing
an apparent reversal of haplotype between M — F and
2C — M —F. We applied the approach that we suggested

The figure is available in its entirety in the online
edition of The American Journal of Human Genetics.

Figure 4. Risk-haplotype nomination for RFC1, POLI, and CASP9.
This legend appears in its entirety in the online edition of The
American Journal of Human Genetics.

above for examining imprinting, stratifying families ac-
cording to whether the offspring might carry at least one
copy of every risk-haplotype-tagging allele derived from
2C— M —F. We reasoned that, if imprinting were the
mechanism, the parents of possible carriers should show
a signed M — F difference for those risk-haplotype-tagging
SNPs, whereas parents of the definite noncarriers should
not. We saw instead statistical significance (two-sided
P = .010) for the carriers and borderline statistical signif-
icance (P = .062) for the noncarriers, suggesting that im-
printing may not explain the finding. When we combined
possible carriers and definite noncarriers, a test based on
summing components of the standardized signed M — F,
which used the haplotype nominated by the offspring as
a template, was highly statistically significant in the neg-
ative direction (two-sided P = .003).

These analyses thus provided evidence of maternal ef-
fects but with the reversal IRF6 haplotype. One possible
explanation for this seemingly unlikely result is that the
same haplotype, the one originally nominated through
2C— M —F, could be protective (against clefting in the
fetus) if carried by the mother and deleterious if carried
by her fetus. At first, such a phenomenon seems implau-
sible. Genes in the mother and those in the fetus are,
however, potentially doing very different things during
fetal development. Also, such a dual effect would allow
such a haplotype to be preserved in the population, be-
cause a benefit would offset the obvious survival-limiting
detriment. In a prehistoric setting, most babies born with
clefts of the lip and palate would have been unable to
nurse properly and would have died of starvation or aban-
donment. Any haplotype that increases risk of clefting
would consequently require a compensatory mechanism
to explain its persistence.

Discussion

Several methods have been proposed for association stud-
ies based on multiple possibly linked markers in nuclear
families, such as a score statistic,' a stepwise conditional
logistic-regression approach,* ?' a multiple-marker exten-
sion to a log-linear model,' a haplotype extension to the
FBAT?? and haplotype-association in the presence of link-
age (H-APL)* methods, and a method based on the pro-
jection conditional on parental haplotypes.>* Nonethe-
less, these methods rely on inferred haplotype phase or
missing-data methods, and their power diminishes with
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Figure 5. Orofacial cleft examples. Result of testing effects of offspring genotype (A) and maternal genotype (B) for IRF6. The Y-axis
shows -log,,(p) at individual SNPs; the X-axis shows the physical location of the nominated risk-haplotype-tagging SNPs along with
the number of informative families. The vertical lines represent either a rare allele on the risk haplotype at the corresponding SNPs
(lines with unblackened circles) or a common allele (lines without unblackened circles). The nine boxed SNPs correspond to the nine
identified by Zucchero et al.”® The dotted horizontal lines correspond to the P = .05 and P = .1 cutoffs.

increasing numbers of loci (hence increasing numbers of  affected by recombination events or population struc-
haplotypes). tures, do not need HWE in the population, and do not

We compared multimarker methods that require neither  sacrifice information by discarding potentially informa-
determination of haplotype phases nor consideration of  tive SNPs before analysis to achieve dimension reduction.
LD blocks. Our proposed methods, like max_TDT, are not  max_Z? and max_TDT also work when SNP data are in-
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complete across loci and achieve a natural correction for
multiple comparisons by treating multiple SNPs as a set.
When genotype data are complete, the combined test,
sum_log(P), offers enhanced power against a range of al-
ternatives. An R program implementing the proposed ap-
proaches is available from Clarice R. Weinberg’'s Web site.

We compared methods by use of a simulation study
based on actual genomic LD structures and then applied
the methods to data from a birth defect study. Power de-
pends on whether the disease-causing SNP is among the
genotyped markers, which will be unknown to investi-
gators. However, our simulations showed that, by allowing
for both possibilities, the sum_log(P) test performs rela-
tively well whether or not the disease-causing mutation
is typed.

Our simulations showed that the power of the tests is
largely determined by the frequency of the mutation allele
when a causative SNP is genotyped. When it is not ge-
notyped, power depends on both the risk-haplotype fre-
quency and the degree of LD between the disease-suscep-
tibility allele or haplotype and the markers. One would
expect good power if the risk-related haplotype happens
to be considerably different from the other haplotypes.
The same is true for haplotype determination. The prob-
ability of identifying the correct haplotype can decrease
substantially when the causative SNP is not typed, and
unique identification relies on how distinctive the disease-
susceptibility haplotype is.

Our proposal for designating risk-haplotype-tagging al-
leles will help researchers focus future studies on localized
genomic regions and an identified subset of candidate risk
haplotypes. Although we have described our method as
leading to the nomination of a risk-related “haplotype,”
itis important to recognize that, although the set of alleles
identified in this way appear to act in concert, the nom-
inated alleles may not necessarily mark a single haplotype
in the usual sense of the word.

One special advantage of max_Z? as opposed to
max_TDT, is its applicability to the assessment of mater-
nally mediated genetic effects. The mother’s genome de-
termines the intrauterine environment in which the ges-
tating fetus must develop. The study of maternally medi-
ated genetic effects is especially important for diseases
with early onset, such as schizophrenia.

Our example analyzed 36 selected SNPs for IRF6, a
strong candidate for a gene that affects palate formation,
using children affected with oral clefts and their parents.
We first confirmed an earlier finding'® of transmission dis-
tortion (max_Z? P = .003). We nominated nine additional
alleles to supplement the nine already reported as relevant
to risk in the fetus. Because the 36 SNPs come from a fairly
large region encompassing the 100 kb upstream and 200
kb downstream of the start site, the set of alleles we nom-
inated could include two or more haplotypes working
together.

In addition, the specific haplotype nominated by
2C — M — F showed strong evidence (P = .003) of effects

mediated through the maternal genome. With the excep-
tion that we used the offspring-nominated haplotype as
a template, the latter test is statistically independent of
the former and so should be regarded as providing largely
independent evidence. This finding will still require rep-
lication in a different population, however. Tests per-
formed separately with families in which the offspring did
not carry the nominated haplotype and with the remain-
der of families in which the offspring might be a carrier
supported the possibility that a maternal effect is either
protective or causative and associated with an opposite
haplotype. Although seemingly unlikely, the existence of
both protective and deleterious effects of the same hap-
lotype could help to explain its persistence in the popu-
lation. Mothers who carry it would enjoy a slight repro-
ductive advantage, whereas fathers who carry it would
suffer a slight reproductive disadvantage.

Our example raised an issue related to distinguishing
causative haplotypes from protective haplotypes (which
would be nominated by the set of alleles complementary
to the risk-haplotype-tagging alleles). While this duality
presents a hypothetical conundrum, a single haplotype
that confers protection will typically be very hard to detect
on the basis of the proposed (or other) methods (simu-
lations not shown) unless it has prevalence near 0.5. Ex-
ternal information can sometimes help resolve doubts—
for example, if the identified risk-haplotype-taggingalleles
are consistent with at least one haplotype that does exist
whereas the complementary alleles are not. Another dif-
ficulty that can arise, in principle, is when exactly com-
plementary haplotypes—for example, (2,1,2,2,1,2) and
(1,2,1,1,2,1)—are both causal or both protective and are
equal to each other in prevalence and in relative risks. In
that extreme scenario, the vector difference method
would not be able to detect either haplotype, because the
mean for the difference vector would remain at its null
value of 0. Presumably, nature rarely presents such
scenarios.

Parents are not always readily available, especially in the
study of diseases of late onset. Individuals, especially fa-
thers, are frequently missing. When that happens, one
could use these single-parent families—for example, by
using C — M in place of 2C — M — F, if the null hypothesis
were that there is no within-family disease association
with either the child’s or the mother’s genotype. The ex-
pected value of C — M should be 0 under this broad null
hypothesis, provided that the state of being unavailable
for genotyping is not related to the father’s genotype and,
thus, that the tests described above are valid. Alternatively,
investigators might recruit unaffected siblings, a spouse,
or offspring. The proposed methods are readily extensible
to families with a variety of relatives to use as controls. If
the null hypothesis of interest remains no within-family
disease association with either the child’s or the mother’s
genotype, one can use genotypes of other relatives to con-
struct the difference vector in the spirit of the methods
proposed by Lee***” and Martin et al.*® For families with
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multiple affected siblings, using an approach similar to
the PDT, one can construct an offspring-complement dif-
ference vector separately for each affected offspring and
use the average of those difference vectors within each
family as the difference vector, D, for calculating our sta-
tistics. A permutation test that includes these family av-
erage difference vectors can be performed exactly as de-
scribed for the triad scenario.

The methods can also be extended to handle multiallelic
markers. One can accommodate such loci by coding the
genotype vector in a slightly different way. Each possible
allele is assigned to occupy a component of the genotype
vector with an entry of O, 1, or 2, corresponding to its
number of copies, so that a k-allele locus has k entries that
sum to 2. The length of the genotype vector is now equal
to the total number of alleles at all the loci to be included
in the analysis. The test statistic max_Z? is computed just
as before. For computation of Hotelling’s 7%, the dimen-
sionality can be reduced by eliminating the linear depen-
dencies by including only k—1 components for each locus
with k alleles.

Our simulation study has limitations. The simulation
scenarios that we used were oversimplified, in that in-
creased risk was due to either a single disease SNP that
resides on one background haplotype or a single risk hap-
lotype. This construction may be reasonable for some dis-
eases but not for others. If association arises from higher
orders of SNP-interaction effects or from multiple and
complementary haplotypes, it can escape detection. On
the other hand, our proposed tests remain valid and re-
sistant to bias due to population stratification in more
complex situations than our simulations encompass.

Our simulations did not include missing data. In prac-

Appendix A

Calculation of Hotelling’s T? for Simulations

tice, whenever many SNPs are studied, genotypes will be
missing at some markers in many individuals. In general,
missing data cause relatively little loss of power for
max_Z?, but Hotelling’s T? test may face a drastically re-
duced number of loci and families, and its power will suf-
fer accordingly. We recommend max_Z> when many SNP
genotypes are missing, as in our example, and sum_log(P)
when the genotype data are more complete. Alternatively,
one can also replace missing SNPs with zeros in the dif-
ference vector and still calculate Hotelling’s 7> and
sum_log(P), as we did in our cleft example. The tests re-
main valid, but power will be impaired in comparison
with the use of complete data.

Identifying a risk haplotype related to a complex disease
with the use of family data is a challenging problem akin
to finding a needle in a haystack. We have proposed a
robust, intuitive, simple, and reasonably powerful ap-
proach to testing and haplotype nomination. The ap-
proach can make use of many SNP markers, linked or not,
to test for either fetal or maternal genetic effects and re-
quires neither HWE nor haplotype phase inference, nor
prior knowledge of haplotypes, thus arming researchers
with a flexible tool for finding those “needles.”
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With these multivariate procedures, a practical problem arises because of matrix singularity. In the human genome,
redundant SNPs—that is, SNPs with a correlation of 1 with some other SNP—frequently occur. A set of SNPs with
perfect or near- perfect correlations or one with some other linear dependency will lead to singular or near-singular
. This difficulty can be accommodated through the use of a generalized inverse of %, calculated via a singular value
decomposition. Writing out the generalized inverse in singular value decomposition form and substituting into the

formula for T2, one has

v
v

v

Here, D represents the mean difference vector, V, represents the jth eigenvector of £, normalized to unit length, N,
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represents the corresponding eigenvalue, and m represents the number of PCs with positive eigenvalues. Thus, Ho-
telling’s 7% can be calculated as

2

(D' V)
1N

j

Inverting a singular £, from every permutation would be time consuming. To reduce the computational burden of
our simulation study by eliminating repeated matrix inversions, we employed an alternate estimator of the variance-
covariance matrix under the null hypothesis, one that remains constant across permutations. We multiply each family’s
D by —1 and combine the resulting data with the original difference data. Our test statistic uses D from the original
data but £, and, hence, V,and \ from the augmented data. The augmentation step means that all the permuted data
sets have the same eigenvalues and eigenvectors as the observed augmented data set, so that we need to perform
principal components analysis only once for both the observed and permuted data. £,, based on the augmented data
is a consistent estimator under the null hypothesis because D and —D have exactly the same likelihood. Under
alternatives, £, based on the augmented data is not a consistent estimator. Nevertheless, because our method relies
on permutations to assess significance, the empirical P value is still valid. We performed simulation studies that
confirmed the validity of our modified test and indicated that power is essentially unaffected.

Appendix B
Construction of a Combined Test

Using an algorithm similar to that of Becker et al.,”” we combined the P values with use of the following method
(fig. B1): (1) Record the values of the max_Z* and Hotelling’s T statistics for the observed as well as each permuted
data set in two vectors. (2) Generate a separate vector of P values for each statistic by assigning P values to the observed
value and to each of the permutation-based values, by comparing each value in turn with the permutation distribution
represented by all the remaining values. At this stage, for each data set, observed or permuted, one has generated a
pair of correlated P values corresponding to the max_Z* and Hotelling’s T statistics. (3) Create a sum_log(P) vector by
summing the logarithms of each pair of P values. (4) Use the sum_log(P) vector to calculate a single combined P value
for the observed value of sum_log(P) based on the permutation distribution represented by the remaining elements of
the sum_log(P) vector. This procedure can be extended to combine a larger number of test statistics or by using different
ways to combine P values. We also considered using the minimum of the two P values; however, results were virtually
identical to those from sum_log(P).

Scores based on observed and

ob dand permutated P values based on observed and
served an difference matrices permutated
;z;r;fnutated difference matrices
ifference
matrices Max Z* Hotelling’s 7% Max Z* Hotelling’s 7% Sum of log P
8ons max Zups || T obs Py || Prons sum _log P,
& (1) |maxZ% ||T? (2) P || Prp 3) sum _log P, * P value
—_— —_— B - R ——

S maxZp || T?p e || Proe sum _log P,, of the test
8p1.00 max!zpl,DOO szl,DOO Pz.pl.OOO Pr.pl,ooo sum _log P‘,L000

Figure B1. A flow chart of the combined test approach. Schematic of the sum_log(P) procedure for combining max_2* and Hotelling’sT?
tests. We use the subscript “obs” to represent observed data (or scores calculated on the basis of the observed data) and the subscripts
“p1”...“p1,000” to represent permutation data (or scores calculated on the basis of the permutation data), assuming 1,000 permutations.
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Appendix C

Equivalent Power for Testing Offspring Effects and Maternal Effects

Suppose the assumption of PHE holds in the population under study. For example, all six possible assignments of
any four distinct haplotypes to parents are equally likely (see table C1). This assumption is somewhat stronger than
mating symmetry'® but is much weaker than HWE, because it can be satisfied, for example, even under genetic pop-
ulation structure. One can see from table 1 that every frequency for pairs of parental diplotypes is duplicated for the
corresponding pairs of offspring-complement diplotypes. For example, the mother-father diplotype pair (a,b)(c,d) has
probability 1/6; correspondingly, the case-complement diplotype pair (a,b)(c,d) also has probability 1/6, since it arises
with probability 1/4 from four distinct mother-father diplotype pairs, each having probability 1/6. That is, under PHE,
the paired diplotype distribution in the population for individuals and their complements is the same as that for
parents.

Our tests for offspring effects are based on distortion of the diplotype distribution of offspring-complement pairs by
two relative penetrance parameters for the offspring genotype. Similarly, our tests for maternal effects are based on
distortion of the diplotype distribution of mother-father pairs by two relative penetrance parameters for the maternal
genotype. Since the null distributions of diplotypes from mother-father pairs and from offspring-complement pairs are
identical, the behavior of mother-father diplotype pairs under maternal relative risks (with no offspring effects present)
must be exactly the same as that of offspring-complement diplotype pairs under equivalent offspring relative risks
(with no maternal effects present). Thus, if there is PHE in the source population, then the power for detecting maternal
effects (with no offspring effects present) is the same as the corresponding power for detecting offspring effects (with
no maternal effects present).

Table C1. Diplotype Mating Types Characterized by the Set of Haplotypes
Carried, the Possible Equally Frequent Pairs of Parents, and the Corresponding
Equally Frequent Pairs of Offspring-Complements Those Parents Could Have

Parental
Diplotype Probability Probability
(Mother of Possible Pairs of Child- of Child-

and Parental Complement Complement

Diplotype Mating Type Father) Diplotype Diplotypes Diplotypes®
(a,b,c,d) (a,b) (c,d) 1/6 (a,c) (b,d) 1/4
(c.d) (a,b) 1/6 (b,d) (a,d) 1/4
(a,d) (b,c) 1/4
(b,c) (a,d) 1/4
(a,c) (b,d) 1/6 (a,b) (c,d) 1/4
(b,d) (a,c) 1/6 (c.d) (a,b) 1/4
(a,d) (b,c) 1/4
(b,c) (a,d) 1/4
(a,d) (b,c) 1/6 (a,b) (c,d) 1/4
(b,c) (a,d) 1/6 (c.d) (a,b) 1/4
(a,c) (b,d) 1/4
(b,d) (a,c) 1/4
(a,b,c,c) (a,b) (c,c) 1/6 (a,c) (b,c) 1/2
(c.c) (a,b) 1/6 (b,c) (a,c) 1/2
(a,c) (b,c) 1/3 (a,b) (c,c) 1/4
(b,c) (a,c) 1/3 (c,c) (a,b) 1/4
(a.c) (b,c) 1/4
(b,c) (a,c) 1/4
(a,a,b,b) (a,a) (b,b) 1/6 (a,b) (a,b) 1

(b,b) (a,a) 1/6

(a,b) (a,b) 2/3 (a,a) (b,b) 1/4
(b,b) (a,a) 1/4
(a,b) (a.b) 1/2
(a,b,b,b) (a,b) (b,b) 1/2 (a,b) (b,b) 1/2
(b,b) (a,b) 1/2 (b,b) (a,b) 1/2
(a,a,a,a) (a,a) (a,a) 1 (a,a) (a,a) 1

* Given unordered parental diplotypes.
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Appendix D

Number of Risk-Haplotype-Tagging SNPs
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Figure D1. The average number of risk-haplotype-tagging SNPs for NAT2 simulations that reached global significance in the SNP_typed,
SNP_not_typed, and Hap scenarios. The relative risks are R, = 2, R, = 3, and each successive background haplotype is used as the
mutation-bearing or risk haplotype. Haplotypes with identical frequencies were shifted slightly for better visualization. Left column,
400 triads. Right column, 1,000 triads. Top row, SNP_typed. Middle row, SNP_not_typed. Bottom row, Hap. Lines with asterisks indicate
simulations that uniquely identified the correct haplotype. Lines with unblackened squares indicate simulations that identified the
correct haplotype either uniquely or with some other haplotypes.
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Web Resources

Accession numbers and URLs for data presented herein are as
follows:

Clarice R. Weinberg’s Web site, http://dir.niehs.nih.gov/dirbb/
weinberg/weinberg.htm (for software for the triad multimarker
[TRIMM] test)

GAIN, http://www.fnih.org/GAIN/GAIN_home.shtml

HapMap, http://www.hapmap.org

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi
.nlm.nih.gov/Omim/ (for NAT2, RFC1, POLI, CASP9, and IRF6)
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